Quantitative measure of complexity of the dynamic event-related EEG data
نویسندگان
چکیده
Currently, the quantification of event-related EEG is usually based on power feature with the classical band power method. In this paper, the method quantifying the complexity and irregularity of event-related EEG data in relation to hand motor imagery is presented. Two groups of the complexity indexes: Kolmogorov complexity (Kc) and Fourier spectral entropy (FSE) are discussed. The event-related desynchronization/synchronization (ERD/ERS) time course is analyzed and characterized by two parameters Kc and FSE, respectively. The percentage of EEG complexity during imagination of the unilateral hand movement relative to that during reference period is calculated for quantifying the complexity measure of ERD/ERS time course. The method is applied to two sets of movement-related EEG data recorded over the primary sensorimotor area from two subjects. In addition, the validity of the quantitative measure of complexity of the event-related EEG is testified by evaluating the performance of feature extraction and classification. The results show that both Kc and FSE can effectively describe the dynamic complexity of event-related EEG and also display the consistent and similar behaviors. The relative increase and decrease of event-related EEG complexity could be an indicator of ERD/ERS, which is also independent of the power changes. Thus, the dynamic complexity measure of event-related EEG quantified by Kc and FSE provides another evidence for ERD/ERS and can be meaningful for analyzing the event-related EEG. r 2006 Elsevier B.V. All rights reserved.
منابع مشابه
A Novel Method for Detection of Epilepsy in Short and Noisy EEG Signals Using Ordinal Pattern Analysis
Introduction: In this paper, a novel complexity measure is proposed to detect dynamical changes in nonlinear systems using ordinal pattern analysis of time series data taken from the system. Epilepsy is considered as a dynamical change in nonlinear and complex brain system. The ability of the proposed measure for characterizing the normal and epileptic EEG signals when the signal is short or is...
متن کاملبهکارگیری روش غیرخطی منحنی بازگشتی برای شناسایی مؤلّفههای حافظهای برمبنای تک ثبت
Abstract: The purpose of this study was to apply recurrence plots on event related potentials (ERPs) recorded during memory recognition tests. EEG signals recorded during memory retrieval in four scalp region were used. Two most important ERP’s components corresponding to memory retrieval, FN400 and LPC, were detected in recurrence plots computed for single-trial EEGs. In addition, the RQA was ...
متن کاملتشخیص خودکار الگوهای پاتولوژیک ریوی در تصاویر HRCT بیماران مبتلا به ILD
Abstract: The purpose of this study was to apply recurrence plots on event related potentials (ERPs) recorded during memory recognition tests. EEG signals recorded during memory retrieval in four scalp region were used. Two most important ERP’s components corresponding to memory retrieval, FN400 and LPC, were detected in recurrence plots computed for single-trial EEGs. In addition, the RQA was ...
متن کاملAssessing the Effects of Alzheimer’s disease on EEG Signals Using the Entropy Measure: a Meta-Analysis
Introduction and Aims: Alzheimer’s disease is the most prevalent neurodegenerative disorder and a type of dementia. 80% of dementia in older adults is because of Alzheimer’s disease. According to multiple research articles, Alzheimer's has several changes in EEG signals such as slowing of rhythms, reduction in complexity and reduction in functional associations, and disordered functional commun...
متن کاملMulti-period network Data Envelopment Analysis to measure the efficiency of a real business
Measuring the efficiency of real businesses is not a simple task, because a real business may involve several processes and sub-processes, forming a very complicated dynamic network of interactions. In this paper, a customized dynamic network data envelopment analysis (NDEA) model is proposed to measure the efficiency of the sub-processes in a real business. The proposed dynamic NDEA model is f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neurocomputing
دوره 70 شماره
صفحات -
تاریخ انتشار 2006